Roll No.:

322514(22)

B. E. (Fifth Semester) Examination, April - May 2021

(Old Scheme)

(CSE Engg. Branch)

THEORY of COMPUTATION

Time Allowed: Three hours

Maximum Marks: 80

Minimum Pass Marks: 28

Note: Attempt all questions. Part (a) of each question is compulsory. Attempt any two parts from (b), (c) and (d). Part(a) carries 2 marks, Part (b), (c) and (d) carries 7 marks.

Unit-I

1. (a) Design FA for r = a * b a *

2

[3]

(b) Difference between NFA & DFA & design DFA for given NFA - where Q_0 & Q_1 are final state.

(c) Explain Myhill Nerode's theorem?

(d) Construct minimum state automation equivalent to the finite automaton given as — where Q_2 is final

J. H. Define Amberen a Unit-II analysis A Salas Salas

2. (a) Define Regular Expression with example?

2

(b) Find the regular expression for given diagram - 7 where $Q_2 \& Q_3$ are final state.

(c) Construct a DFA with reduced states equivalent to the regular expression

$$R = (a+b)*(aa+bb)(a+b)*?$$
 7

(d) Explain pumping lemma and prove that $L = \{a^p p \text{ is prime}\}$ is not regular?

Unit-III

3.	(a)	Define Ambiguity. If g is the grammar $S \rightarrow SbS/a$.	
		Show that g is ambiguous.	2
	(b)	Consider a grammar G whose production rules are :	7
		S - > 0B/1A, A - > 0/0S/1AA, B - > 1/1S/0BB	
		Find LMD & RMD for string 00110101 & construct a derivation tree.	
	(c)	Define GNF. Convert the given grammar into GNF.	7
		$S->AB\ AB\ AB, A->a/^{\land}, B->b/^{\land}$	
	(d)	Explain in brief null production. Eliminate null	
		production of given Grammar.	
		to) Construct a DFA, with reduced states equivalent	
		$S->aS/AB, A->^{\land}, B->^{\land}, D->b$	7
		Unit-IV	
4.	(a)	Define PDA & also design PDA for CFL,	
		$\{ w \ c \ w' \ / \ w = (0+1) * \& \ w' \ \text{is reverse of} \ w \}$	2

		$\rightarrow B 0S/1S/0$	
		Test whether 010^4 is in $N(A)$	7
	(c)	Design a TM that accept $\{0^n1^n/n > 0\}$ and show the Transition table & Transition diagram of TM.	7
	(d)	Design a TM to recognize the lanugage	
		$\{1^n 2^n 3^n / n > 0\}$	7
		Unit-V	
5.	(a)	Construct TM for Zero Function Z.	2
	(b)	Define partial recursive function & also prove that a function $f(x) = x/2$. Is partial recursive function over N (natural number).	7
	(c)	Describe the Space & Time complexity in detail.	7
	(d)	Write short notes on: (any two)	7
		(i) Church's Hypothesis	
		(ii) Myhill Nerode's theorem	
		(iii) PCP	
		(iv) Computability	

(b) Construct a PDA A equivalent to the following

CFG: $\rightarrow S$ 0BB